A satellite is placed in a circular orbit with a radius equal to one-third the radius of the Moon's orbit. What is its period of revolution in lunar months? (A lunar month is the period of revolution of the Moon.)

Respuesta :

Answer:

0.19245 lunar months

Explanation:

T = Orbital time

r = Radius

[tex]r_2=\dfrac{1}{3}r_1[/tex]

1 denotes the moon

2 denotes the satellite

From Kepler's law we have

[tex]T^2=\dfrac{4\pi^2r^3}{GM}[/tex]

So,

[tex]\\\Rightarrow T\propto \sqrt{r^3}[/tex]

[tex]\dfrac{T_2}{T_1}=\sqrt{\dfrac{r_2^3}{r_1^3}}\\\Rightarrow \dfrac{T_2}{T_1}=\sqrt{\dfrac{\left(\dfrac{1}{3}r_1\right)^3}{r_1^3}}\\\Rightarrow \dfrac{T_2}{T_1}=0.19245\\\Rightarrow T_2=0.19245T_1[/tex]

The period of revolution of the satellite is 0.19245 lunar months