The differentiable functions xxx and yyy are related by the following equation: \sin(y)=-xsin(y)=−5x sin, (, x, ), equals, minus, 5, x Also, \dfrac{dy}{dt}=10 dt dy ​ =10start fraction, d, y, divided by, d, t, end fraction, equals, 10. Find \dfrac{dx}{dt} dt dx ​ start fraction, d, x, divided by, d, t, end fraction when y=-\piy=−πy, equals, minus, pi.

Respuesta :

Answer:

[tex]\frac{dx}{dt}=2[/tex]

Step-by-step explanation:

We are given that

[tex]siny=-5x[/tex]

[tex]\frac{dy}{dt}=10[/tex]

We have to find the value of [tex]\frac{dx}{dt}[/tex] when [tex]y=-\pi[/tex]

Differentiate w.r.t time

[tex]cosy\frac{dy}{dt}=-5\frac{dx}{dt}[/tex]

Using formula:[tex]\frac{d(sinx)}{dx}=cosx[/tex]

Substitute the values then we get

[tex]cos(-\pi)\times 10=-5\frac{dx}{dt}[/tex]

We know that [tex]cos(-x)=cosx, cos(\pi)=-1[/tex]

Therefore, we get

[tex]cos(\pi)\times 10=-5\frac{dx}{dt}[/tex]

[tex]\frac{dx}{dt}=\frac{10cos\pi}{-5}[/tex]

[tex]\frac{dx}{dt}=\frac{10(-1)}{-5}=2[/tex]

Hence, [tex]\frac{dx}{dt}=2[/tex]

Answer: Khan Academy says -1.4

Step-by-step explanation: