contestada

A square-based shipping crate is being designed that must contain a volume of 16 ft3 . The material that is used for the base and the lid costs 3 dollars/ft2 , while the material used for the sides costs 2 dollars/ft2 . What are the most cost-effective dimensions of such a crate?

Respuesta :

Answer:

Explanation:

Given

volume [tex]V=16 ft^3[/tex]

Suppose base is square with side L

height of crate is h

Volume [tex]V=L^2\times h[/tex]

[tex]16=L^2\times h[/tex]

Cost of top and bottom area [tex]c_1=3L^2[/tex]

Cost of Side area [tex]c_2=4Lh\times 2=8Lh=8L\times \frac{16}{L^2}=\frac{128}{L}[/tex]

Total Cost [tex]C=c_1+c_2[/tex]

Total Cost [tex]C=3L^2+\frac{128}{L}[/tex]

Differentiate C w.r.t Length

[tex]\frac{dC}{dL}=6L-\frac{128}{L^2}[/tex]

[tex]L^3=\frac{128}{6}[/tex]

[tex]L=2.75 ft[/tex]

[tex]h=\frac{16}{2.75^2}=11.46 ft[/tex]

Dimensions are [tex]L\times L\times h=2.75\times 2.75\times 11.46[/tex]