Answer:
[tex]a = \dfrac{(9.57\times 10^{7})(57 \hat{k} - 20\hat{j})}[/tex]
Explanation:
given,
E = 56.0 j V/m
B = (0.2 i + 0.3 j + 0.4 k ) T
v = 190 i m/s
mass of proton = 1.67 x 10⁻²⁷ Kg
e = 1.6 x 10⁻¹⁹ C
acceleration of proton is equal to = ?
magnetic force
F_B = e v B
F_B = e x (190 i) x (0.2 i + 0.3 j + 0.4 k)
F_B = e x (57 k - 76 j)
for proton electric force
[tex]F_e = 56 \times e \hat{j}[/tex]
[tex]F_{net} = F_A + F_B[/tex]
[tex]F_{net} = e(57 \hat{k} - (76-56) \hat{j})[/tex]
[tex]F_{net} = e(57 \hat{k} - 20\hat{j})[/tex]
[tex]a = \dfrac{1.6\times 10^{-19}}{1.67\times 10^{-27}}(57 \hat{k} - 20\hat{j})[/tex]
[tex]a = (9.57\times 10^{7})(57 \hat{k} - 20\hat{j})[/tex]