A 51.24-g sample of Ba(OH)2 is dissolved in enough water to make 1.20 liters of solution. How many mL of this solution must be diluted with water in order to make 1.00 liter of 0.100 molar Ba(OH)2 ?

Respuesta :

Answer:

0.40 L

Explanation:

Calculation of the moles of [tex]Ba(OH)_2[/tex] as:-

Mass = 51.24 g

Molar mass of [tex]Ba(OH)_2[/tex] = 171.34 g/mol

The formula for the calculation of moles is shown below:

[tex]moles = \frac{Mass\ taken}{Molar\ mass}[/tex]

Thus,

[tex]Moles= \frac{51.24\ g}{171.34\ g/mol}[/tex]

[tex]Moles= 0.2991\ mol[/tex]

Volume = 1.20 L

The expression for the molarity is:

[tex]Molarity=\frac{Moles\ of\ solute}{Volume\ of\ the\ solution}[/tex]

[tex]Molarity=\frac{0.2991\ mol}{1.20\ L}=0.24925\ M[/tex]

Thus,

Considering

[tex]Molarity_{working\ solution}\times Volume_{working\ solution}=Molarity_{stock\ solution}\times Volume_{stock\ solution}[/tex]

Given  that:

[tex]Molarity_{working\ solution}=0.100\ M[/tex]

[tex]Volume_{working\ solution}=1\ L[/tex]

[tex]Volume_{stock\ solution}=?[/tex]

[tex]Molarity_{stock\ solution}=0.24925\ M[/tex]

So,  

[tex]0.100\ M\times 1\ L=0.24925\ M\times Volume_{stock\ solution}[/tex]

[tex]Volume_{stock\ solution}=\frac{0.100\times 1}{0.24925}\ L=0.40\ L[/tex]

The volume of 0.24925M stock solution added = 0.40 L