Answer:
Explanation:
Given
Resistance [tex]R=4.5\Omega [/tex]
Flux [tex]\phi =a+bt^2-ct^3[/tex]
[tex]\phi =7+12.5t^2-5.50t^3[/tex]
emf induced [tex]e=-\frac{d\phi }{dt}[/tex]
[tex]e=-\frac{d(7+12.5t^2-5.50t^3)}{dt}=25t-16.5t^2[/tex]
[tex]i=\frac{e}{R}=-\frac{1}{R}\times \frac{d\phi }{dt}[/tex]
[tex]i=\frac{1}{4.5}\times (25t-16.5t^2)[/tex]
Maximum value of will be at [tex]\frac{di}{dt}=0[/tex]
therefore
[tex]\frac{di}{dt}=0[/tex]
[tex]25-33t=0[/tex]
[tex]t=0.757 s[/tex]
i at [tex]t=0.757 s[/tex]
[tex]i=\frac{1}{4.5}\times (25\times 0.757-16.5(0.757)^2)[/tex]
[tex]i=2.104 A[/tex]