Respuesta :

Answer:

The solutions of the system of equations are the points

[tex](\frac{1-\sqrt{33}} {2},\frac{5-\sqrt{33}} {2})[/tex]  

[tex](\frac{1+\sqrt{33}} {2},\frac{5+\sqrt{33}} {2})[/tex]  

Step-by-step explanation:

we have

[tex]y=-x^{2} +2x+10[/tex] ----> equation A

[tex]y=x+2[/tex] ----> equation B

Solve the system by substitution

substitute equation B in equation A

[tex]x+2=-x^{2} +2x+10[/tex]

solve for x

[tex]-x^{2} +2x+10-x-2=0[/tex]

[tex]-x^{2} +x+8=0[/tex]

The formula to solve a quadratic equation of the form

[tex]ax^{2} +bx+c=0[/tex]

is equal to

[tex]x=\frac{-b\pm\sqrt{b^{2}-4ac}} {2a}[/tex]

in this problem we have

[tex]-x^{2} +x+8=0[/tex]

so

[tex]a=-1\\b=1\\c=8[/tex]

substitute in the formula

[tex]x=\frac{-1\pm\sqrt{1^{2}-4(-1)(8)}} {2(-1)}[/tex]

[tex]x=\frac{-1\pm\sqrt{33}} {-2}[/tex]

[tex]x=\frac{-1+\sqrt{33}} {-2}[/tex]  -----> [tex]x=\frac{1-\sqrt{33}} {2}[/tex]  

[tex]x=\frac{-1-\sqrt{33}} {-2}[/tex]  -----> [tex]x=\frac{1+\sqrt{33}} {2}[/tex]  

Find the values of y

For [tex]x=\frac{1-\sqrt{33}} {2}[/tex]  

[tex]y=x+2[/tex]

[tex]y=\frac{1-\sqrt{33}} {2}+2[/tex]  ---->[tex]y=\frac{5-\sqrt{33}} {2}[/tex]  

For [tex]x=\frac{1+\sqrt{33}} {2}[/tex]  

[tex]y=x+2[/tex]

[tex]y=\frac{1+\sqrt{33}} {2}+2[/tex]  ---->[tex]y=\frac{5+\sqrt{33}} {2}[/tex]  

therefore

The solutions of the system of equations are the points

[tex](\frac{1-\sqrt{33}} {2},\frac{5-\sqrt{33}} {2})[/tex]  

[tex](\frac{1+\sqrt{33}} {2},\frac{5+\sqrt{33}} {2})[/tex]