PLS HELP!! 1. if [x-1/x]=5, then the value of [x2+1/x2] is [here~x2=xsquare
(a)25 (b)27 (c)29 (d)none of these


2.if{x-1/x}=5, then the value of {x4+1/x4} is
(a)725 (b)727 (c)729 (d)none of these

Respuesta :

Answer:

1 - 27 , 2- 727

Step-by-step explanation:

see image for explanation

Ver imagen Helpbook

Answer:

1. (b)

2. (b)

Step-by-step explanation:

1.

We have,

[tex]x-\frac{1}{x}=5[/tex]

Now, squaring both sides, we get

   [tex](x-\frac{1}{x}) ^{2}=5^{2}[/tex]        .......(1)

Now, using the identity [tex](a-b)^2=a^2+b^2-2ab[/tex] in the LHS of the equation (1), we get

  [tex]x^{2} +\frac{1}{x^2}-2\times x \times\frac{1}{x}=25[/tex]

⇒[tex]x^2+\frac{1}{x^2}-2=25[/tex]

[tex]x^{2} +\frac{1}{x^2}=25+2=27[/tex]

∴ The correct answer is option (b).

2.

We have,

[tex]x-\frac{1}{x}=5[/tex]

Now, squaring both sides, we get

   [tex](x-\frac{1}{x}) ^{2}=5^{2}[/tex]                .......(1)

Now, using the identity [tex](a-b)^2=a^2+b^2-2ab[/tex] in the LHS of the equation (1), we get

  [tex]x^{2} +\frac{1}{x^2}-2\times x \times\frac{1}{x}=25[/tex]

⇒[tex]x^2+\frac{1}{x^2}-2=25[/tex]

⇒[tex]x^{2} +\frac{1}{x^2}=25+2=27[/tex]       .......(2)

Again, squaring both sides of equation (2), we get

[tex](x^2+\frac{1}{x^2})^2=(27)^2[/tex]            .......(3)

Now, using the identity [tex](a+b)^2=a^2+b^2+2ab[/tex] in the LHS of the

equation (3), we get

  [tex](x^2)^2+(\frac{1}{x^2})^2+2\times x^2\times \frac{1}{x^2}=729[/tex]

⇒[tex]x^4+\frac{1}{x^4}+2=729[/tex]

⇒[tex]x^4+\frac{1}{x^4}=729-2=727[/tex]

∴ The correct answer is option (b).