Answer:
7004.7003
Step-by-step explanation:
We are given the following information in the question:
[tex]35.4067=\displaystyle\frac{3}{p}+\frac{5}{q}+4r+\frac{6}{s}+7t[/tex]
We know that,
[tex]35.4067 = (3\times 10^1) + (5\times 10^0) + (4\times 10^{-1})+(0\times 10^{-2}) + (6\times 10^{-3}) + (7\times 10^{-4})[/tex]
Comparing the two equations, we get:
[tex]\displaystyle\frac{1}{p} = 10^1\\\\p = 10^{-1}\\q = 10^0\\r = 10^{-1}\\s = 10^3\\t = 10^{-4}[/tex]
We have to evaluate:
[tex]2p+4q+5r+7s+3t[/tex]
Putting values, we get:
[tex](2\times 10^{-1}) + (4\times 10^0) + (5\times 10^{-1}) + (7\times 10^3) + (3\times 10^{-4})\\=0.2 + 4 + 0.5 + 7000 + 0.0003\\=7004.7003[/tex]