contestada

A horizontal aluminum rod 4.8 cm in diameter projects 5.6 cm from a wall. A 1200 kg object is suspended from the end of the rod. The shear modulus of aluminum is 3.0 ? 1010 N/m2. Neglect the rod's mass.(a) Find the shear stress on the rod. (N/m2)(b) Find the vertical deflection of the end of the rod. (m)

Respuesta :

Answer:

(a) Shear stress will be 4780487.80 [tex]N/m^2[/tex]

(b) [tex]\Delta l=7.648\times 10^{-6}m[/tex]

Explanation:

We have given length of the aluminium rod l = 4.8 cm = 0.048 m

Diameter [tex]d=5.6cm,\ so\ r=\frac{5.6}{2}=2.8cm=0.028m[/tex]

Area [tex]A=\pi r^2=3.14\times 0.028^2=0.00246m^2[/tex]

Shear modulus [tex]G=3\times 10^{10}N/m^2[/tex]

Mass m = 1200 kg

So weight [tex]w=1200\times 9.8=11760N[/tex]

(a) So hear stress P [tex]=\frac{F}{A}=\frac{11760}{0.00246}=4780487.80N/m^2[/tex]

(b) Now shear modulus is [tex]G=\frac{stress}{strain}[/tex]

So [tex]3\times 10^{10}=\frac{4780487.80}{strain}[/tex]

[tex]strain=1.593\times 10^{-4}[/tex]

Now strain is given by

[tex]strain=\frac{\Deltal}{l}[/tex]

So [tex]1.593\times 10^{-4}=\frac{\Delta l}{0.048}[/tex]

[tex]\Delta l=7.648\times 10^{-6}m[/tex]