Respuesta :

Answer:

[tex]ab^2\sqrt{a}[/tex]

Step-by-step explanation:

We are asked to express [tex]\sqrt{a^3b^4}[/tex] in simplified form.

Using radical rule [tex]\sqrt{mn}=\sqrt{m}\cdot \sqrt{n}[/tex], we will get:

[tex]\sqrt{a^3b^4}=\sqrt{a^3}\cdot\sqrt{b^4}[/tex]

Rewrite [tex]a^3[/tex] as [tex]a^2\cdot a[/tex] and [tex]b^4[/tex] as [tex](b^2)^2[/tex]

[tex]\sqrt{a^3b^4}=\sqrt{a^2\cdot a}\cdot\sqrt{(b^2)^2}[/tex]

Using radical rule [tex]\sqrt{mn}=\sqrt{m}\cdot \sqrt{n}[/tex], we will get:

[tex]\sqrt{a^3b^4}=\sqrt{a^2}\cdot\sqrt{a}\cdot\sqrt{(b^2)^2}[/tex]

Using radical rule [tex]\sqrt[n]{m^n}=m[/tex],we will get:

[tex]\sqrt{a^3b^4}=a\cdot b^2\cdot\sqrt{a}[/tex]

[tex]\sqrt{a^3b^4}=ab^2\cdot\sqrt{a}[/tex]

Therefore, the simplified form of the given expression would be [tex]ab^2\sqrt{a}[/tex].