A mixture of CH4 and H2O is passed over a nickel catalyst at 1000 K. The emerging gas is collected in a 5.00-L flask and is found to contain 8.62 g of CO, 2.60 g of H2, 43.0 g of CH4, and 48.4 g of H2O.

Respuesta :

The given question is incomplete. But the complete question is this:

A mixture of [tex]CH_{4}[/tex] and [tex]H_2O[/tex] is passed over a nickel catalyst at 1000 K. The emerging gas is collected in a 5.00-L flask and is found to contain 8.62 g of CO, 2.60 g of [tex]H_2[/tex], 43.0 g of [tex]CH_{4}[/tex], and 48.4 g of [tex]H_{2}O[/tex]. Assuming that equilibrium has been reached, calculate [tex]K_{p}[/tex] for the reaction.

Explanation:

As the given reaction is as follows.

       [tex]CH_4 + H_2O \rightarrow CO + 3H_2[/tex]

And, we know that

        No. of moles = [tex]\frac{mass}{\text{molar mass}}[/tex]

Therefore, calculate the moles as follows.

      Moles of [tex]CH_4[/tex] = [tex]\frac{43}{16.04}[/tex]

                                  = 2.6808  mol

      Moles of [tex]H_2O[/tex] = [tex]\frac{48.4}{18.01528}[/tex]

                                  = 2.6866 mol

     Moles of CO = [tex]\frac{8.62}{28.01}[/tex]

                           = 0.307747  mol

       Moles of [tex]H_{2}[/tex] = [tex]\frac{2.6}{2.01588}[/tex]

                           = 1.2897  mol

As, we know that

        Concentration = [tex]\frac{moles}{volume (L) }[/tex]

Given volume = 5 L

Hence, calculate the concentration of given species as follows.

    Conc. of [tex]CH_4 = \frac{2.6875}{5}[/tex]

                                 = 0.5361

     Conc. of [tex]H_2O = \frac{2.6889}{5}[/tex]

                                = 0.5373

      Conc. of CO = [tex]\frac{0.307747}{5}[/tex]

                                  = 0.06155

and,  Conc. of [tex]H_2 = \frac{1.2897}{5}[/tex]

                               = 0.2579

Now, expression for equilibrium constant for the given reaction is as follows.

        [tex]K_{c} = \frac{[CO][H_2]^{3}}{[CH_4][H_2O] }[/tex]

Now, putting the given values into the above formula as follows.

        [tex]K_{c} = \frac{[0.06155][0.2579]^{3}}{[0.5361][0.5373]}[/tex]

         [tex]K_{c} = 3.665 \times 10^{-3}[/tex]

Also, we know that

             [tex]K_p = K_c \times (RT)^dn[/tex]

Consider the equation

        [tex]CH_4(g) + H2O(g) \rightarrow CO(g) + 3H_2(g)[/tex]

Calculate change in moles of gas as follows.

         change in gas moles (dn) = 1 + 3 - 1 - 1

                                              dn = 2

As,    [tex]K_p = K_c \times (RT)^2[/tex]

It is given that,  

T = 1000 K ,         R = 0.0821

So,

         [tex]K_p = 3.665 \times 10^{-3} \times (0.0821 \times 1000)^{2}[/tex]

          [tex]K_p[/tex] = 24.70

Thus, we can conclude that value of [tex]K_{p}[/tex] for the reaction is 24.70.