The function $f(x),$ defined for $0 \le x \le 1,$ has the following properties:________
(i) $f(0) = 0.$
(ii) If $0 \le x < y \le 1,$ then $f(x) \le f(y).$
(iii) $f(1 - x) = 1 - f(x)$ for all $0 \le x \le 1.$
(iv) $f \left( \frac{x}{3} \right) = \frac{f(x)}{2}$ for $0 \le x \le 1.$ Find $f \left( \frac{2}{7} \right).$

Respuesta :

Answer:

[tex]f(\frac{2}{7}})=\frac{3}{8}[/tex]

Step-by-step explanation:

By properties i) and iii), [tex]f(1-0)=1-f(0)=1=f(1)[/tex]. Now we can use properties iii) iv) to compute some values of f. Namely:

[tex]f(\frac{1}{2})=f(1-\frac{1}{2})=1-f(\frac{1}{2}) \rightarrow f(\frac{1}{2})=\frac{1}{2} [/tex]

[tex]f(\frac{1}{3})=\frac{f(1)}{2}=\frac{1}{2}[/tex]

[tex]f(\frac{1}{6})=f(\frac{1}{2} \frac{1}{3})=\frac{f(\frac{1}{2})}{2}=\frac{1}{2}\frac{1}{2}=\frac{1}{4}[/tex]

[tex]f(\frac{1}{9})=f(\frac{1}{3} \frac{1}{3})=\frac{f(\frac{1}{3})}{2}=\frac{1}{2}\frac{1}{2}=\frac{1}{4}[/tex]

With these values, we can obtain f(1/7) using property ii). Note that:

[tex]\frac{1}{6}>\frac{1}{7}>\frac{1}{9} \rightarrow f(\frac{1}{6})\geq f(\frac{1}{7})\geq f(\frac{1}{9}) \rightarrow \frac{1}{4} \geq f(\frac{1}{7}) \geq \frac{1}{4}[/tex] then [tex]f(\frac{1}{7}})=\frac{1}{4}[/tex].

Finally, combine the previous work with properties iii) and iv) to get

[tex]f(\frac{2}{7})=f(\frac{6}{7} \frac{1}{3})=\frac{1}{2}f(\frac{6}{7})=\frac{1}{2} f(1-\frac{1}{7})=\frac{1}{2}(1-f(\frac{1}{7}))=\frac{1}{2} (1-\frac{1}{4})=\frac{3}{8}[/tex]