Respuesta :
Answer:
r =-0.996
Step-by-step explanation:
The correlation coefficient is a "statistical measure that calculates the strength of the relationship between the relative movements of two variables". It's denoted by r and its always between -1 and 1.
In order to calculate the correlation coefficient we can begin doing the following table:
n   x     y     xy     x*x    y*y
1 Â Â 4 Â Â Â 43.65 Â 174.6 Â Â Â 16 Â Â 1905.323
2 Â Â 5 Â Â 40.74 Â 203.7 Â Â Â 25 Â Â 1659.748
3 Â Â 6 Â Â 38.53 Â 231.18 Â Â Â 36 Â 1484.561
4 Â Â 7 Â Â 37.22 Â 260.54 Â Â 49 Â Â 1385.323
5 Â Â 8 Â Â 33.01 Â 264.08 Â Â 64 Â 1089.660
6 Â Â 9 Â Â 30.61 Â 275.49 Â Â 81 Â Â 936.972
7 Â Â 10 Â Â 29.89 Â 298.9 Â Â 100 Â 893.412
8 Â Â 11 Â Â 27.18 Â 298.98 Â 121 Â 738.752
9 Â Â 12 Â Â 25.87 Â 310.44 Â Â 144 Â 669.257
10 Â Â 13 Â Â 23.56 Â 306.28 Â 169 Â 555.0974
11 Â Â 14 Â Â 22.25 Â 311.50 Â Â 196 Â 495.063
12 Â Â 15 Â Â 18.64 Â 279.60 Â 225 Â 347.450
13 Â Â 16 Â Â 18.33 Â 293.28 Â 256 Â 335.989
14 Â Â 17 Â Â 16.92 Â 287.64 Â 289 Â 286.286
15 Â Â 18 Â Â 13.81 Â Â 248.58 Â 324 Â 190.716
16 Â Â 19 Â Â 9.9 Â Â Â 188.10 Â Â 361 Â 98.01
[tex] n =16 \sum x \sum y \sum xy \sum x^2 \sum y^2[/tex]
n=16 [tex] \sum x = 184, \sum y = 430.11, \sum xy=4232.89, \sum x^2 =2456, \sum y^2 =13071.6[/tex] Â
And in order to calculate the correlation coefficient we can use this formula:
[tex]r=\frac{n(\sum xy)-(\sum x)(\sum y)}{\sqrt{[n\sum x^2 -(\sum x)^2][n\sum y^2 -(\sum y)^2]}}[/tex]
[tex]r=\frac{16(4232.89)-(184)(430.11)}{\sqrt{[16(2456) -(184)^2][16(13071.600) -(430.11)^2]}}=-0.996[/tex]
So then the correlation coefficient would be r =-0.996