Answer:
a= 13.15 years
b= -0.62 years/$
Step-by-step explanation:
Hello!
Given the variables
Y: Age of a used car. (years)
X: Price of a sold used car. ($000)
The linear regression model is:
E(Y)= α + βXi
The estimated equation is:
^Y= a + bXi
[tex]a= (\frac{sumY_i}{n} ) - b(\frac{sumX_i}{n} )[/tex]
a= 13.15 years
[tex]b= \frac{(sumX_iY_i-\frac{(sumX_i)(sumY_i)}{n} }{sumX_i^2-(\frac{(sumX_i)^2}{n} )}[/tex]
b= -0.62 years/$
Then ^Y= 13.15 - 0.62Xi
Mean Y= 8.92
Mean X= 6.91
∑Y= 107
∑Y²=1009
∑X=82.90
∑X²=615.29
∑XY=712.9
Hope it helps!