Answer:
296 rad
Explanation:
time (t) = 4.84 s
angular acceleration (a) = 6.76 rad/s^{2}
angular velocity (ω) = 77.6 rad/s
what is the angular displacement (θ) of the wheel during this time?
from the equation of angular kinematics angular displacement (θ) = ω₀t + [tex]\frac{1}{2}at^{2}[/tex]
where
    ω = ω₀ + at
    77.6 = ω₀ + (6.76 x 4.84)
    ω₀ = 77.6 - (6.76 x 4.84) = 44.88 rad/s
angular displacement (θ) =ω₀t +  [tex]\frac{1}{2}at^{2}[/tex]
angular displacement (θ) =[tex] (44.88 x 4.84) + \frac{1}{2} x 6.76 x 4.84^{2}[/tex]
angular displacement (θ) = 296 rad