Answer:
a) R(x)  = -0.03*x² + 820*x
b) R´(x)  = -  0.06*x + 820
c) R´(5600)  = 484 units)
Step-by-step explanation: Â Â Â Â
a) We have unit price of the product
p(x)  =  - 0,03*x + 820        where  0  ≤  x  ≤ 20000
Then Revenue Function
R(x)  = x*p(x)    ⇒  R(x)  = x* ( - 0.03*x + 820)
R(x)  = -0.03*x² + 820*x
b) The Marginal Revenue Function is:
We get derivatives to get that function
R´(x)  = -2*0.03*x  + 820
R´(x)  = -  0.06*x + 820
c) Compute
R´(5600) ??
R´(x)  = -  0.06*x + 820
for x = 5600
R´(5600)  =  -0.06 ( 5600) + 820
R´(5600)  = 484 units