A horizontal spring with spring constant of 9.80 N/m is attached to a block with a mass of 1.20 kg that sits on a frictionless surface. When the block is 0.345 m from its equilibrium position, it has a speed of 0.540 m/s.(a) What is the maximum displacement of the block from the equilibrium position?m(b) What is the maximum speed of the block?m/s(c) When the block is 0.200 m from the equilibrium position, what is its speed?m/s

Respuesta :

Answer:

Explanation:

Given

at certain point displacement and velocity is 0.345 m and 0.54 m/s

Therefore Potential and Kinetic Energy associated is

[tex]U=\frac{1}{2}kx^2[/tex]

[tex]U=\frac{1}{2}\times 9.8\times (0.345)^2[/tex]

[tex]U=0.583 J[/tex]

Kinetic Energy [tex]K=\frac{1}{2}mv^2[/tex]

[tex]k=\frac{1}{2}\times 1.2\times (0.54)^2=0.174 J[/tex]

Total Energy [tex]T=U+K=0.583+0.174=0.757 J[/tex]

Total Energy is conserved hence at maximum displacement  all energy will be Potential energy

[tex]T=\frac{1}{2}kA^2[/tex]

where A=maximum displacement

[tex]0.757=\frac{1}{2}\times 9.8\times A^2[/tex]

[tex]0.1544=A^2[/tex]

[tex]A=0.393 m[/tex]

Maximum speed occurs at equilibrium Position where Potential Energy is zero

thus [tex]T=\frac{1}{2}mv^2[/tex]

[tex]0.757=\frac{1}{2}\times 1.2\times v_{max}^2[/tex]

[tex]v_{max}=1.123 m/s[/tex]

(c)When block is at 0.2 m from Equilibrium speed then its Potential Energy is

[tex]U=\frac{1}{2}kx^2=\frac{1}{2}\times 9.8\times (0.2)^2=0.196 J[/tex]

[tex]T=U+K[/tex]

[tex]K=0.757-0.196=0.561 J[/tex]

[tex]K=\frac{1}{2}mv^2[/tex]

[tex]0.561=\frac{1}{2}\times 1.2\times v^2[/tex]

[tex]v=0.966 m/s[/tex]