Respuesta :

Answer:

[tex]\frac{dy}{dx} = e^{x^{2} } ( \frac{1}{x} + 2x ln2x )

Step-by-step explanation:

Let Given function (y) = [tex]e^{x^{2}} ln2x[/tex]

If we differentiate this function with respect to x -

[tex]\frac{dy}{dx} = \frac{d}{dx} ( e^{x^{2} } ln2x)[/tex]

As we know that-

\frac{d}{dx} ( I × II ) = I × \frac{d}{dx} ( II ) + II × \frac{d}{dx} (I)

[tex]\frac{dy}{dx} = e^{x^{2} } \frac{d}{dx} ( ln2x ) + ln2x \frac{d}{dx} ( e^{x^{2} })

[tex]\frac{dy}{dx} = e^{x^{2} } \frac{1}{2x} × 2 + ln2x  × e^{x^{2} } × 2x

[tex]\frac{dy}{dx} = e^{x^{2} } \frac{1}{x} + ln2x  × e^{x^{2} } × 2x

[tex]\frac{dy}{dx} =  e^{x^{2} } ( \frac{1}{x} + 2x ln2x )