Respuesta :

If P = Q - 4, then the value of P³ - Q³ + 12 PQ + 64 is 0

Step-by-step explanation:

To find the value of the polynomial

  • Substitute P by Q - 4 in the polynomial
  • Solve the brackets
  • Add the like terms

∵ P = Q - 4

∵ P³ - Q³ + 12 PQ + 64

- Substitute P by Q - 4 to find P³

∴ P³ = (Q - 4)³

- Distribute (Q - 4)³ into (Q - 4)(Q - 4)(Q - 4) and multiply them

∵ (Q - 4)(Q - 4) = Q(Q) + Q(-4) - 4(Q) - 4(-4) = Q² - 4Q - 4Q + 16

- Add like terms

∴ (Q - 4)(Q - 4) = Q² - 8Q + 16

∵ (Q² - 8Q + 16)(Q - 4) = Q²(Q) - Q²(4) - 8Q(Q) - 8Q(-4) + 16(Q) - 16(4)

∴ (Q² - 8Q + 16)(Q - 4) = Q³ - 4Q² - 8Q² + 32Q + 16Q - 64

- Add like terms

∴ (Q² - 8Q + 16)(Q - 4) = Q³ - 12Q² + 48Q - 64

∴ (Q - 4)(Q - 4)(Q - 4) = Q³ - 12Q² + 48Q - 64

∴ (Q - 4)³ = Q³ - 12Q² + 48Q - 64

P³ = Q³ - 12Q² + 48Q - 64

- Substitute P by Q - 4 to find 12 PQ

∵ 12 PQ = 12Q(Q - 4) = 12(Q)(Q) - 12(4)

12 PQ = 12Q² - 48Q

- Substitute P³  by (Q³ - 12Q² + 48Q - 64) and 12 PQ by (12Q² - 48Q)

  in the polynomial

∵ P³ - Q³ + 12 PQ + 64 = (Q³ - 12Q² + 48Q - 64) - Q³ + (12Q² - 48Q) + 64

- Now collect the like terms

∴ P³ - Q³ + 12 PQ + 64 = (Q³ - Q³) + (-12Q² + 12Q²) + (48Q - 48Q) + (-64 + 64)

∴ P³ - Q³ + 12 PQ + 64 = 0 + 0 + 0 + 0

P³ - Q³ + 12 PQ + 64 = 0

If P = Q - 4, then the value of P³ - Q³ + 12 PQ + 64 is 0

Learn more:

You can learn more about the polynomials in brainly.com/question/9184197

#LearnwithBrainly