Respuesta :
Answer
The answer and procedures of the exercise are attached in the following archives.
Step-by-step explanation:
You will find the procedures, formulas or necessary explanations in the archive attached below. If you have any question ask and I will aclare your doubts kindly.

Answer:
The point P should be [tex](10-\frac{2}{\sqrt{3} } )[/tex] or [tex]8.85\, \mathrm k\mathrm m[/tex] from the oil refinery.
Step-by-step explanation:
Let,
Cost of laying pipe over land is [tex]a[/tex].
Cost of laying pipe over river is [tex]b[/tex].
The horizontal distance between refinery and point P is [tex]x[/tex].
The horizontal distance between refinery and tank is [tex]D[/tex].
The expression for cost of the pipeline is,
[tex]C=ax+b\sqrt{(D-x)^2+4}[/tex]
Differentiate the above equation with respect to [tex]x[/tex].
[tex]\begin{aligned}C'=a+b({\frac{2(D-x)(-1)}{2\sqrt{(D-x)^2+4} })&=a-\frac{b(D-x)}{2\sqrt{(D-x)^2+4} }\\&=\frac{(a\sqrt{(D-x)^2+4})-b(D-x) }{\sqrt{(D-x)^2+4} }\\\end {aligned}[/tex]
Equate [tex]C'=0[/tex]
[tex]a\sqrt{(D-x)^2+4} -b(D-x)=0[/tex]
Now solve for [tex]x[/tex].
[tex](a^2-b^2)(D-x)^2=-4a^2\\D-x=\frac{2a}{\sqrt{b^2-a^2} } \\x=D-\frac{2a}{\sqrt{b^2-a^2} }[/tex]
Now put the values.
[tex]x=10-\frac{2\times200,000}{\sqrt{(400,000)^2-(200,000)^2} }\\x=10-\frac{2}{\sqrt{3} } \\x=8.85 \,\mathrm {km}[/tex]
Therefore, the point P should be [tex](10-\frac{2}{\sqrt{3} } )[/tex] or [tex]8.85\, \mathrm k\mathrm m[/tex] from the oil refinery.
Learn more here:
https://brainly.com/question/12965537