Answer:
81.9756 m/s
16.8 m
4.8795 Hz
Explanation:
m = Mass of string = 0.12 kg
L = Length of string = 8.4 m
T = Tension on string = 96 N
Linear density is given by
[tex]\mu=\dfrac{m}{L}\\\Rightarrow \mu=\dfrac{0.12}{8.4}[/tex]
Spee of the wave is given by
[tex]v=\sqrt{\dfrac{T}{\mu}}\\\Rightarrow v=\sqrt{\dfrac{96}{\dfrac{0.12}{8.4}}}\\\Rightarrow v=81.9756\ m/s[/tex]
The speed of the waves on the string is 81.9756 m/s
Wavelength is given by
[tex]\lambda=2L\\\Rightarrow \lambda=2\times 8.4\\\Rightarrow \lambda=16.8\ m[/tex]
The longest possible wavelength is 16.8 m
Frequency is given by
[tex]f=\dfrac{v}{\lambda}\\\Rightarrow f=\dfrac{81.9756}{16.8}\\\Rightarrow f=4.8795\ Hz[/tex]
The frequency of the wave is 4.8795 Hz