Answer:
I₂ = 2.13 x 10⁻⁸ W/m²
Explanation:
given,
increase in sound level = 28.1 dB
frequency of the sound = 250 Hz
intensity = 3.3 x 10⁻¹¹ W/m²
Intensity delivered = ?
the difference of intensity level is give as
[tex]\beta_2-\beta_1 = 10log(\dfrac{I_2}{I_o}) - 10log(\dfrac{I_1}{I_o})[/tex]
[tex]\beta_2-\beta_1 = 10(log(\dfrac{I_2}{I_o}) -log(\dfrac{I_1}{I_o}))[/tex]
[tex]\beta_2-\beta_1 = 10(log(\dfrac{I_2}{I_1})[/tex]
[tex]28.1= 10(log(\dfrac{I_2}{I_1})[/tex]
[tex]log\dfrac{I_2}{I_1}=2.81[/tex]
[tex]\dfrac{I_2}{I_1}=10^{2.81}[/tex]
I₂ = 645.65 I₁
I₂ = 645.65 x 3.3 x 10⁻¹¹
I₂ = 2.13 x 10⁻⁸ W/m²