A piston-cylinder device contains Helium gas initially at 150 kPa, 20 o C, and 0.5m 3 . The helium is now compressed in a polytropic process () to 400 kPa and 140 o C. Determine the work and heat transfer done during this process.

Respuesta :

Answer:

Explanation:

Given

[tex]P_1=150 kPa[/tex]

[tex]T_1=20^{\circ}C[/tex]

[tex]V_1=0.5 m^3[/tex]

[tex]T_2=140^{\circ}C[/tex]

[tex]P_2=400 kPa[/tex]

R for Helium [tex]R=2.076[/tex]

[tex]c_v=3.115 kJ/kg-K[/tex]

mass of gas [tex]m=\frac{P_1V_1}{RT_1}[/tex]

[tex]m=\frac{150\times 0.5}{2.076\times 293}[/tex]

[tex]m=0.123 kg[/tex]

Similarly [tex]V_2[/tex] can be found

[tex]\frac{P_1V_1}{T_1}=\frac{P_2V_2}{T_2}[/tex]

[tex]V_2=0.264 m^3[/tex]

Work done [tex]W=\int_{V_1}^{V_2}PdV[/tex]

[tex]W=\frac{P_2V_2-P_1V_1}{n-1}[/tex]

[tex]W=\frac{mR(T_2_T_1)}{n-1}[/tex]

Since it is a polytropic Process

therefore [tex]PV^n=c[/tex]

[tex]P_1V_1^n=P_2V_2^n[/tex]

[tex](\frac{V_1}{V_2})^n=\frac{P_2}{P_1}[/tex]

[tex](\frac{0.5}{0.264})^n=\frac{400}{150}[/tex]

[tex]n=\frac{\ln 2.66}{\ln 1.893}[/tex]

[tex]n=1.533[/tex]

[tex]W=\frac{0.123\times 2.076(140-20)}{1.533-1}[/tex]

[tex]W=57.48 kJ[/tex]    

From Energy balance

[tex]E_{in}-E_{out}=\Delta E_{system}[/tex]

Neglecting kinetic and Potential Energy change

[tex]Q_{in}+W_{in}=change\ in\ Internal\ Energy[/tex]

Change in Internal Energy [tex]\Delta U=u_2-u_1[/tex]

[tex]\Delta U=mc_v(T_2-T_1)[/tex]

[tex]\Delta U=0.123\times 3.115(140-20)[/tex]

[tex]\Delta U=45.977 kJ[/tex]

[tex]Q_{in}+57.48=45.977[/tex]

[tex]Q_{in}=-11.50 kJ[/tex]  

i.e. Heat is being removed