Predict the shift in equilibrium position that will occur for each of the following reactions when the volume of the reaction container is increased.
A) 2COF2(g)⇌CO2(g)+CF4(g).
i) to the left.
ii) to the right.
iii) does not shift.
B) 2NO(g)+O2(g)⇌2NO2(g).
i) to the left.
ii) to the right.
iii) does not shift.
C) 2N2O5(s)⇌4NO2(g)+O2(g).
i) to the left.
ii) to the right.
iii) does not shift.
D) 2SO2(g)+O2(g)⇌2SO3(g).
i) to the left.
ii) to the right.
iii) does not shift.
E) PCl5(g)⇌PCl3(g)+Cl2(g).
i) to the left.
ii) to the right.
iii) does not shift.

Respuesta :

Explanation:

Any change in the equilibrium is studied on the basis of Le-Chatelier's principle.

This principle states that if there is any change in the variables of the reaction, the equilibrium will shift in the direction to minimize the effect.

Increase the volume:

If the volume of the container is increased, the pressure will decrease according to Boyle's Law. Now, according to the Le-Chatlier's principle, the equilibrium will shift in the direction where increase in pressure is taking place. So, the equilibrium will shift in a direction where more number gaseous moles are present.

A) [tex]2COF_2(g)\rightleftharpoons CO_2(g)+CF_4(g)[/tex]

Number of gaseous moles on reactant side = 2

Number of gaseous moles on product side = 2

Equilibrium will not shift any direction as on both sides number of gaseous moles are same.

B) [tex]2NO(g)+O_2(g)\rightleftharpoons 2NO_2(g)[/tex]

Number of gaseous moles on reactant side = 3

Number of gaseous moles on product side = 2

Equilibrium will shift any left direction.

C) [tex]2N_2O_5(g)\rightleftharpoons 4NO_2(g)+O_2[/tex]

Number of gaseous moles on reactant side = 2

Number of gaseous moles on product side = 5

Equilibrium will shift any right direction.

D) [tex]2SO_2(g)+O_2(g)\rightleftharpoons 2SO_3(g)[/tex]

Number of gaseous moles on reactant side = 3

Number of gaseous moles on product side = 2

Equilibrium will shift any left direction.

E) [tex]PCl_5\rightleftharpoons PCl_3(g)+Cl_2(g)[/tex]

Number of gaseous moles on reactant side = 1

Number of gaseous moles on product side = 2

Equilibrium will shift any right direction.