ΔEFG is located at E (0, 0), F (−7, 4), and G (0, 8). Which statement correctly classifies ΔEFG?
ΔEFG is a scalene triangle.
ΔEFG is an isosceles triangle.
ΔEFG is an equilateral triangle.
ΔEFG is a right triangle.

Respuesta :

Answer:

ΔEFG is an isosceles triangle.

Step-by-step explanation:

Given:

E (0, 0),

F (−7, 4),

G (0, 8)

ΔEFG

Solution:

Distance formula

Distance d = [tex]\sqrt{(x_2-x_1)^2 +( y_2-y_1)^2[/tex]

Step 1: Finding the length of  EF

By using distance formula,

[tex]EF = \sqrt{(-7 - 0)^2 + (4-0)^2}[/tex]

[tex]EF = \sqrt{(49) + (16)}[/tex]

[tex]EF = \sqrt{(49) + (16)}\\EF = \sqrt{65}\\[/tex]

Step 2: Finding the length of  FG

By using distance formula,

[tex]FG = \sqrt{(0-(-7))^2+(8-4)^2}\\FG = \sqrt{(7)^2 +(4)^2}\\FG = \sqrt{49 +16}\\FG = \sqrt{65}[/tex]

Step 2: Finding the length of  GE

[tex]GE= \sqrt{(0-0)^2 + (0-8)^2}\\\\GE =\sqrt{(-8)^2}\\GE = \sqrt{64}\\GE = 8[/tex]

Thus we could see that the sides EF = FG

So it is  a isosceles triangle.

Ver imagen nandhini123

Answer:

B

Step-by-step explanation: