Respuesta :
Answer:
11)y = [tex]\frac{3}{2} e^{x} - \frac{1}{2} e^{-x}[/tex]
12)y = [tex]\frac{e^{2} }{1+e^{2} } (e^{x} - e^{-x} )[/tex]
13)y = [tex]5e^{-(x+1)}[/tex]
14)y = 0
Step-by-step explanation:
Given data:
[tex]y=c_{1} e^{x} +c_{2} e^{-x}[/tex]
y''-y=0
The equation is
[tex]m^{r}[/tex]-1 = 0
(m-1)(m+1) = 0
if  above equation is zero then either
m - 1 = 0 or  m + 1 = 0
m = 1     ,   m  = - 1
11)
y(0) = 1 , y'(0) = 2
[tex]y'=c_{1} e^{x} -c_{2} e^{-x}[/tex]
[tex]c_{1}[/tex] + Â [tex]c_{2}[/tex] = 1 Â (y(0) = 1) (1)
[tex]c_{1}[/tex] - Â [tex]c_{2}[/tex] = 2 Â (y'(0) = 2) Â (2)
adding 1 & 2
2[tex]c_{1}[/tex] = 3
[tex]c_{1}[/tex] = 3/2
3/2 + Â [tex]c_{2}[/tex] = 1
[tex]c_{2}[/tex] Â = 1 - Â 3/2
[tex]c_{2}[/tex] = - 1/2
y = [tex]\frac{3}{2} e^{x} - \frac{1}{2} e^{-x}[/tex]
12)
y(0) = 1 , y'(0) = e
[tex]c_{1}[/tex] + Â [tex]c_{2}[/tex] = 0 (y(0) = 1) (3)
[tex]c_{1}[/tex] = - [tex]c_{2}[/tex]
[tex]e=c_{1} e -c_{2} e^{-1}[/tex] Â (y'(0) = 2) Â (4)
[tex]e=c_{1} e -\frac{c_{2} }{e} }[/tex]
[tex]e =\frac{c_{1} e^{2} -c_{2} }{e} }[/tex]
[tex]e^{2} ={c_{1} e^{2} -c_{2} }[/tex]
replace [tex]c_{2}[/tex] = [tex]c_{1}[/tex] by equation 3
[tex]e^{2} ={c_{1} e^{2} -c_{1} }[/tex]
taking common [tex]c_{1}[/tex]
[tex]e^{2} =c_{1} ({e^{2} -1 })[/tex]
[tex]\frac{e^{2} }{({e^{2} -1 })} =c_{1}[/tex]
[tex]-\frac{e^{2} }{({e^{2} -1 })} =c_{2}[/tex]
∴ y = [tex]\frac{e^{2} }{1+e^{2} } (e^{x} - e^{-x} )[/tex]
13)
y(-1) = 5 , y'(-1) = -5
[tex]c_{1}[/tex][tex]e^{-1}[/tex] + Â [tex]c_{2}[/tex][tex]e^{1}[/tex] = 5 Â (y(-1) = 5 ) (5)
[tex]c_{1}[/tex][tex]e^{-1}[/tex] - Â [tex]c_{2}[/tex][tex]e^{1}[/tex] = -5 Â Â (y'(-1) = -5) Â (6)
Adding 5&6
2[tex]c_{1}[/tex] [tex]e^{-1}[/tex] = 0
[tex]c_{1}[/tex] = 0
[tex]c_{2}[/tex][tex]e^{1}[/tex] = 5 - [tex]c_{1}[/tex][tex]e^{-1}[/tex]
[tex]c_{2}[/tex][tex]e^{1}[/tex] = 5 - 0
[tex]c_{2}[/tex]= 5/e
y = [tex]5e^{-1} e^{-x}[/tex]
y = [tex]5e^{-(x+1)}[/tex]
14)
y(0) = 0 , y'(0) = 0
[tex]c_{1}[/tex] + Â [tex]c_{2}[/tex] = Â 0 (y(0) = 0) (7)
[tex]c_{1}[/tex] - Â [tex]c_{2}[/tex] = 0 Â (y'(0) = 0) Â (8)
Adding 7 & 8
2[tex]c_{1}[/tex] = 0
[tex]c_{2}[/tex] =
y = 0