Respuesta :

Answer:

[tex]\frac{\sqrt[3]{90 x^2 y z^2} }{6 y z}[/tex]

Step-by-step explanation:

step 1;-

Given [tex]\frac{\sqrt[3]{5 x^2} }{\sqrt[3]{12 y^2 z} }[/tex]

now you have rationalizing  denominator  (i.e monomial) with

[tex]\frac{\sqrt[3]{5 x^2} }{\sqrt[3]{12 y^2 z} } X \frac{\sqrt[3]{(12 y^2 z)^{2} } }{\sqrt[3]{(12 y^2 z)^2} }[/tex]

By using algebraic formula is

  • [tex]\sqrt{ab} = \sqrt{a} \sqrt{b}[/tex]......(a)
  • now [tex]\frac{\sqrt[3]{5 x^2)(12 y^2 z)^2} }{\sqrt[3]{12 y^2 z)(12 y^2 z)^2} }[/tex]
  • [tex]\frac{\sqrt[3]{720 x^2 y^4 z^2} }{\sqrt[3]{(12 y^2 z)^{3} } }[/tex]....(1)
  • again using Formula [tex]\sqrt[n]{a^{n} } =a[/tex]

now simplification , we get denominator function

  • [tex]\frac{\sqrt[3]{720 x^2 y^4 z^2} }{12 y^2 z}[/tex]

again you have to simplify numerator term

  • [tex]\frac{\sqrt[3]{2^3 y^3 90 (x^2  y z^2)} }{12 y^2 z}[/tex]

now simplify

  • [tex]\frac{2 y\sqrt[3]{90 x^2 y  z^2} }{12 y^2 z}[/tex]

        cancelling y and 2 values

we get Final answer

[tex]\frac{\sqrt[3]{90 x^2 y z^2} }{6 y z}[/tex]