Respuesta :

Answer:  [tex]4\sqrt{2}+10[/tex]

=============================================

Let [tex]x = \sqrt{8}[/tex]

We can replace every square root of 8 with x, since we have that equation above. We end up with 3-x+7+3x. This simplifies to 2x+10 after combining like terms.

Now we can reintoduce the square root back in

[tex]2x+10 = 2\sqrt{8}+10[/tex]

The use of x is optional as you can combine like terms directly. However, it might help to make the temporary replacement.

-------------

Now simplify the square root

[tex]\sqrt{8} = \sqrt{4*2}[/tex]

[tex]\sqrt{8} = \sqrt{4}*\sqrt{2}[/tex]

[tex]\sqrt{8} = 2\sqrt{2}[/tex]

--------

Therefore,

[tex]2\sqrt{8}+10[/tex]

turns into

[tex]2*2\sqrt{2}+10[/tex]

[tex]4\sqrt{2}+10[/tex]

Answer:

10 + 4sqrt(2)

Step-by-step explanation:

3 - sqrt(8) + 7 + 3sqrt(8)

3 - 2sqrt(2) + 7 + 6sqrt(2)

10 + 4sqrt(2)

sqrt: square root