Respuesta :

The equivalent expressions are:

[tex](x+y)^2 = x^2+2xy+y^2[/tex]

[tex](x+y)^2 = x(x+y)+y(x+y)[/tex]

[tex](x+y)^2 = (x+y)(x+y)[/tex]

[tex](x+y)^2=(y+x)^2[/tex]

Solution:

We have to find the equivalent expression for the given expression

Given expression is:

[tex](x+y)^2[/tex]

First equivalent expression:

Let us first use the algebraic identity

[tex](a+b)^2=a^2+2ab+b^2[/tex]

Therefore,

[tex](x+y)^2 = x^2+2xy+y^2[/tex]

Second Equivalent expression:

From above we get,

[tex](x+y)^2 = x^2+2xy+y^2[/tex]

2xy can be rewritten as xy + xy

Thus we get,

[tex]x^2+2xy + y^2 = x^2+xy+xy+y^2[/tex]

Group the terms we get,

[tex]x^2+2xy + y^2 = (x^2+xy)+(xy+y^2)[/tex]

Factor out "x" from first bracket and "y" from second bracket

[tex]x^2+2xy+y^2 = x(x+y)+y(x+y)[/tex]

Thus the equivalent expression is:

[tex](x+y)^2 = x(x+y)+y(x+y)[/tex]

Third equivalent expression:

[tex]\text{We know that } a^2 = a \times a[/tex]

Therefore,

[tex](x+y)^2 = (x+y)(x+y)[/tex]

Fourth equivalent expression:

By commutative property we know that,

[tex]a + b = b + a[/tex]

Therefore,

[tex](x+y)^2=(y+x)^2[/tex]

Thus the equivalent expressions are found