What is the true solution to the equation below? 2 l n e Superscript l n 2 x Baseline minus l n e Superscript l n 10 x Baseline = l n 30 x = 30 x = 75 x = 150 x = 300

Respuesta :

Answer:

x=75

Step-by-step explanation:

Solving Logarithm Equations

The natural logarithm is the inverse function of the exponential function which means

[tex]\displaystyle e^{\ln x}=x[/tex]

We have this equation to solve for x

[tex]2lne^{ln2x}-lne^{10x}=ln30[/tex]

Applying the above property

[tex]2ln2x-ln10x=ln30[/tex]

Also knowing that

[tex]a.lnb=lnb^a[/tex]

We have

[tex]ln(2x)^2-ln10x=ln30[/tex]

Using the fundamental property of logarithms

[tex]\displaystyle \ln\frac{a}{b}=lna-lnb[/tex]

We reduce:

[tex]\displaystyle \ln\frac{4x^2}{10x}=ln30[/tex]

Taking off logarithms

[tex]\displaystyle \frac{4x^2}{10x}=30[/tex]

Operating

[tex]\displaystyle 4x^2=30(10x)[/tex]

[tex]\displaystyle 4x^2=300x[/tex]

Dividing by x (assuming x different from 0)

[tex]\displaystyle 4x=300[/tex]

Solving

[tex]\boxed{x=75 }[/tex]

Answer:

75

Step-by-step explanation: