A 75.0 g piece of gold at 650. K is dropped into 180. g of H2O(l) at 310. K in an insulated container at 1 bar pres- sure. Calculate the temperature of the system once equilib- rium has been reached. Assume that CP, m for Au and H2O is constant at their values for 298 K throughout the temperature range of interest.

Respuesta :

Answer:

The temperature of the system after reaching equilibrium is 314.21 K.

Explanation:

Heat lost by gold will be equal to heat gained by the water

[tex]-Q_1=Q_2[/tex]

Mass of iron = [tex]m_1=75.0 g[/tex]

Specific heat capacity of gold= [tex]c_1=0.126 J/gK [/tex]

Initial temperature of the gold= [tex]T_1=650.0 K [/tex]

Final temperature of gold = [tex]T_2[/tex]=T

[tex]Q_1=m_1c_1\times (T-T_1)[/tex]

Mass of water= [tex]m_2=180.0 g[/tex]

Specific heat capacity of water= [tex]c_2=4.184 J/gK [/tex]

Initial temperature of the water = [tex]T_3=310 K[/tex]

Final temperature of water = [tex]T_2[/tex]=T

[tex]Q_2=m_2c_2\times (T-T_3)[/tex]

[tex]-Q_1=Q_2[/tex]

[tex]-(m_1c_1\times (T-T_1))=m_2c_2\times (T-T_3)[/tex]

On substituting all values:

[tex]-(75.0 g\times 0.126 J/gK\times (T-650.0K))=180.0 g\times 4.184 J/gK\times (T-310.0K)[/tex]

we get, T = 314.21 K

The temperature of the system after reaching equilibrium is 314.21 K.