Answer:
The temperature of the system after reaching equilibrium is 314.21 K.
Explanation:
Heat lost by gold will be equal to heat gained by the water
[tex]-Q_1=Q_2[/tex]
Mass of iron = [tex]m_1=75.0 g[/tex]
Specific heat capacity of gold= [tex]c_1=0.126 J/gK [/tex]
Initial temperature of the gold= [tex]T_1=650.0 K [/tex]
Final temperature of gold = [tex]T_2[/tex]=T
[tex]Q_1=m_1c_1\times (T-T_1)[/tex]
Mass of water= [tex]m_2=180.0 g[/tex]
Specific heat capacity of water= [tex]c_2=4.184 J/gK [/tex]
Initial temperature of the water = [tex]T_3=310 K[/tex]
Final temperature of water = [tex]T_2[/tex]=T
[tex]Q_2=m_2c_2\times (T-T_3)[/tex]
[tex]-Q_1=Q_2[/tex]
[tex]-(m_1c_1\times (T-T_1))=m_2c_2\times (T-T_3)[/tex]
On substituting all values:
[tex]-(75.0 g\times 0.126 J/gK\times (T-650.0K))=180.0 g\times 4.184 J/gK\times (T-310.0K)[/tex]
we get, T = 314.21 K
The temperature of the system after reaching equilibrium is 314.21 K.