A projectile of mass 6.8 kg kg is shot horizontally with an initial speed of 14.5 m/s from a height of 26.7 m above a flat desert surface. The acceleration of gravity is 9.81 m/s². For the instant before the projectile hits the surface, find the work done on the projectile by gravity. Answer in units of J.

Respuesta :

Answer:

Explanation:

Given

mass of projectile [tex]m=6.8\ kg[/tex]

initial horizontal speed [tex]u_x=14.5\ m/s[/tex]

height [tex]h=26.7\ m[/tex]

Considering vertical motion

velocity gained by projectile during 26.7 m motion

[tex]v^2-u^2=2 as[/tex]

v=final velocity

u=initial velocity

a=acceleration

s=displacement

[tex]v^2-(0)^2=2\times (9.8)\times (26.7)[/tex]

[tex]v=\sqrt{523.32}[/tex]

[tex]v=22.87\ m/s[/tex]

Horizontal velocity will remain same as there is no acceleration

final velocity [tex]v_{net}=\sqrt{(v)^2+(u_x)^2}[/tex]

[tex]v_{net}=\sqrt{733.57}=27.08\ m/s[/tex]

Initial kinetic Energy [tex]K_i=\frac{1}{2}mu_x^2[/tex]

[tex]K_i=\frac{1}{2}\times 6.8\times (14.5)^2=714.85\ J[/tex]

Final Kinetic Energy [tex]K_f=\frac{1}{2}mv_{net}^2[/tex]

[tex]K_f=\frac{1}{2}\times 6.8\times (27.08)^2[/tex]

[tex]K_f=2493.30\ J[/tex]

Work done by all the force is equal to change in kinetic Energy of object

Work done by gravity is [tex]W_g[/tex]

[tex]W_g=\Delta K[/tex]

[tex]W_g=2493.30-714.85=1778.45\ J[/tex]