Respuesta :

Answer:

Substitution of x+1

Step-by-step explanation:

We are given that

[tex]\int \frac{1}{x^2+2x+2}dx[/tex]

[tex]\int\frac{1}{(x^2+2x+1)+1}dx[/tex]

[tex]\int\frac{1}{(x+1)^2+1^2}dx[/tex]

By using identity

[tex](a+b)^2=a^2+b^2+2ab[/tex]

Substitute x+1=t

Differentiate w.r.t x

dx=dt

Substitute the values

[tex]\int\frac{1}{t^2+1^2}dx[/tex]

[tex]\frac{1}{1}tan^{-1}\frac{t}{1}+C[/tex]

By using formula :[tex]\int\frac{1}{x^2+a^2}dx=\frac{1}{a}tan^{-1}\frac{x}{a}+C[/tex]

[tex]tan^{-1}(x+1)+C[/tex]