Answer:
V = 20.2969 mm^3 @ t = 10
r = 1.692 mm @ t = 10
Step-by-step explanation:
The solution to the first order ordinary differential equation:
[tex]\frac{dV}{dt} = -kA[/tex]
Using Euler's method
[tex]\frac{dVi}{dt} = -k *4pi*r^2_{i} = -k *4pi*(\frac {3 V_{i} }{4pi})^(2/3)\\ V_{i+1} = V'_{i} *h + V_{i} Â Â \\[/tex]
Where initial droplet volume is:
[tex]V(0) = \frac{4pi}{3} * r(0)^3 = Â \frac{4pi}{3} * 2.5^3 = 65.45 mm^3[/tex]
Hence, the iterative solution will be as next:
[tex]V'_{i} Â = -k *4pi*(\frac{3*65.45}{4pi})^(2/3) Â = -6.283\\V_{i+1} = 65.45-6.283*0.25 = 63.88[/tex]
[tex]V'_{i} Â = -k *4pi*(\frac{3*63.88}{4pi})^(2/3) Â = -6.182\\V_{i+1} = 63.88-6.182*0.25 = 62.33[/tex]
[tex]V'_{i} Â = -k *4pi*(\frac{3*62.33}{4pi})^(2/3) Â = -6.082\\V_{i+1} = 62.33-6.082*0.25 = 60.813[/tex]
We compute the next iterations in MATLAB (see attachment)
Volume @ t = 10 is = 20.2969
The droplet radius at t=10 mins
[tex]r(10) = (\frac{3*20.2969}{4pi})^(2/3) = 1.692 mm\\[/tex]
The average change of droplet radius with time is:
Δr/Δt = [tex]\frac{r(10) - r(0)}{10-0} = \frac{1.692 - 2.5}{10} = -0.0808 mm/min[/tex]
The value of the evaporation rate is close the value of k = 0.08 mm/min
Hence, the results are accurate and consistent!