According to one set of measurements, the tensile strength of hair is 196 MPa , which produces a maximum strain of 0.380 in the hair. The thickness of hair varies considerably, but let's use a diameter of 50.0 μm
Part A
What is the magnitude of the force giving this tensile stress?
F = ? N

Part B
If the length of a strand of the hair is 12.0 cm at its breaking point, what was its unstressed length? original length = ?cm

Respuesta :

Answer:

(a). The magnitude of the force is 0.38416 N.

(b). The original length is 0.0869 m.

Explanation:

Given that,

Tensile strength = 196 MPa

Maximum strain = 0.380

Diameter = 50.0 μm

Length = 12.0 cm

We need to calculate the area

Using formula of area

[tex]A=\dfrac{\pi}{4}\times d^2[/tex]

Put the value into the formula

[tex]A=\dfrac{\pi}{4}\times(50.0\times10^{-6})^2[/tex]

[tex]A=1.96\times10^{-9}\ m^2[/tex]

We need to calculate the magnitude of the force

Using formula of force

[tex]F=\sigma A[/tex]

Put the value into the formula

[tex]F=196\times10^{6}\times1.96\times10^{-9}[/tex]

[tex]F=0.38416\ N[/tex]

(b). If the length of a strand of the hair is 12.0 cm at its breaking point

We need to calculate the unstressed length

Using formula of strain

[tex]strain=\dfrac{\Delta l}{l_{0}}[/tex]

[tex]\Delta l=strain\times l_{0}[/tex]

Put the value into the formula

[tex]\Delta l=0.380\times l_{0}[/tex]

Length after expansion is 12 cm

We need to calculate the original length

Using formula of length

[tex]l=l_{0}+\Delta l[/tex]

Put the value into the formula

[tex]I=l_{0}+0.380\times l_{0}[/tex]

[tex]l=1.38l_{0}[/tex]

[tex]l_{0}=\dfrac{l}{1.38}[/tex]

[tex]l_{0}=\dfrac{12\times10^{-2}}{1.38}[/tex]

[tex]l_{0}=0.0869\ m[/tex]

Hence, (a). The magnitude of the force is 0.38416 N.

(b). The original length is 0.0869 m.