Answer:
Present value: 1711.49
At the end of year two: 1,273.92
At the end of the 8th year: 3167.86
Explanation:
We will use the value of present value of a lump sum on each cash flow, then add them all together for the present value.
Example for 6th Year
[tex]\frac{Maturity}{(1 + rate)^{time} } = PV[/tex]
Maturity 800.00
time 6.00
rate 0.08000
[tex]\frac{800}{(1 + 0.08)^{6} } = PV[/tex]
PV 504.1357
Year // Cashflow // Discounted cash flow
0 300 300
1 300 277.78
2 600 514.40
3 -500 -396.92
4 -300 -220.51
5 0 0
6 800 504.14
7 700 408.44
8 600 324.16
1711.49
For future value, we will adjust using the future value of a lump sum:
Again, using the 6th year as example:
[tex]Principal \: (1+ r)^{time} = Amount[/tex]
Principal 800.00
time 2.00 (it capitalize trought 7th and 8th years)
rate 0.08000
[tex]800 \: (1+ 0.08)^{2} = Amount[/tex]
Amount 933.12
Year // Cashflow // Future value
0 300 555.28
1 300 514.15
2 600 952.12
3 -500 -734.66
4 -300 -408.15
5 0 0
6 800 933.12
7 700 756
8 600 600
3167.86
At the end of 2nd year:
Year // Cashflow // Future value
0 300 349.92
1 300 324
2 600 600
Total 1,273.92