Respuesta :

Answer:

[tex]f(x)=\frac{x^3}{3}+9e^x+Cx+D[/tex]

Step-by-step explanation:

The function F(x) is an antiderivative of the function f(x) on an interval I if

F′(x) = f(x) for all x in I.

The function F(x) + C is the General Antiderivative of the function f(x) on an interval I if F′(x) = f(x) for all x in I and C is an arbitrary constant.

The Indefinite Integral of f(x) is the General Antiderivative of f(x).

[tex]\int {f(x)} \, dx =F(x)+C[/tex]

To find the first antiderivative you must integrate the function [tex]f''(x) = 2x + 9e^x[/tex]

[tex]f'(x)=\int { 2x + 9e^x} \, dx \\\\\mathrm{Apply\:the\:Sum\:Rule}:\quad \int f\left(x\right)\pm g\left(x\right)dx=\int f\left(x\right)dx\pm \int g\left(x\right)dx\\\\\int \:2xdx+\int \:9e^xdx = x^2+9e^x\\\\\mathrm{Add\:a\:constant\:to\:the\:solution}\\\\x^2+9e^x+C[/tex]

To find the second antiderivative you must integrate the function [tex]f'(x) =x^2+9e^x+C[/tex]

[tex]f(x)=\int {x^2+9e^x+C} \, dx\\\\\mathrm{Apply\:the\:Sum\:Rule}:\quad \int f\left(x\right)\pm g\left(x\right)dx=\int f\left(x\right)dx\pm \int g\left(x\right)dx\\\\\int \:x^2dx+\int \:9e^xdx+\int \:Cdx= \frac{x^3}{3}+9e^x+Cx\\\\\mathrm{Add\:a\:constant\:to\:the\:solution}\\\\\frac{x^3}{3}+9e^x+Cx+D[/tex]

Therefore,

[tex]f(x)=\frac{x^3}{3}+9e^x+Cx+D[/tex]

The function "f" will be "[tex]\frac{x^3}{3}+9e^x+Cx+D[/tex]".

Given function,

  • [tex]f''(x) = 2x+9e^x[/tex]

By integrating, we get

→ [tex]f'(x) = \int f'' (x) dx[/tex]

           [tex]= \int (2x+9e^2)dx[/tex]

           [tex]= x^2+9e^x+C[/tex]

Again by integrating with respect to "x", we get

→ [tex]f(x) = \int f'(x) dx[/tex]

          [tex]= \int (x^2+9e^x+C)dx[/tex]

          [tex]= \frac{x^3}{3}+9e^x+Cx+D[/tex]

Thus the above answer is right.

Learn more:

https://brainly.com/question/23084452