Respuesta :

Answer:

[tex]4.53 \times 10^{- 1}[/tex]

Step-by-step explanation:

We have to divide [tex]1.6 \times 10^{- 10}[/tex] by [tex]3.53 \times 10^{- 10}[/tex] and we have to write the answer in scientific notation.

Now, [tex](1.6 \times 10^{- 10}) \div (3.53 \times 10^{- 10})[/tex]

= [tex](\frac{1.6}{10^{- 10}})\div (\frac{3.53}{10^{- 10}})[/tex] {Since using the property of exponent [tex]x^{- a} = \frac{1}{x^{a} }[/tex] }

= [tex](\frac{1.6}{10^{- 10}}) \times (\frac{10^{- 10}}{3.53} )[/tex]

{Since we know the mathematical operation [tex]\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times \frac{d}{c}[/tex] }

= [tex]\frac{1.6}{3.53}[/tex]

= 0.45325

= [tex]4.53 \times 10^{- 1}[/tex] (Answer) {Rounded the coefficient to two decimal places}