A student randomly guesses on 10 true or false questions use the bionomial model to find the probability that the student gets 7 out of the 10 questions right

A student randomly guesses on 10 true or false questions use the bionomial model to find the probability that the student gets 7 out of the 10 questions right class=

Respuesta :

Option A: 11.8%

Step-by-step explanation:

The total number of question n=10

The probability of getting true is [tex]p=\frac{1}{2}[/tex]

The probability of getting false is [tex]q=\frac{1}{2}[/tex]

It is given that the student gets 7 out of 10 questions right, the, [tex]x=7[/tex]

Using binomial distribution formula,

[tex]P(x)=\left[\frac{n !}{x !(n-x) !}\right] p^{x} q^{n-x}[/tex]

Substituting the values, we get,

[tex]\begin{aligned}P(7) &=\left[\frac{10 !}{7 !(10-7) !}\right]\left(\frac{1}{2}\right)^{7}\left(\frac{1}{2}\right)^{3} \\&=\left[\frac{10 !}{7 ! 3 !}\right]\left(\frac{1}{2}\right)^{7+3}\end{aligned}[/tex]

Solving, we get,

[tex]P(7)=\frac{15}{128}[/tex]

[tex]P(7)=0.118[/tex]

To find the probability, multiply it by 100, we get,

[tex]0.118*100=11.8[/tex]%

Thus, the correct answer is 11.8%