Answer
given,
initial speed of the rocket A = 100 m/s
height of explode = 300 m
acceleration due to gravity = 9.8 m/s²
rocket b is launched after tâ time
now, using equation of motion to calculate time
[tex]s = ut + \dfrac{1}{2}gt^2[/tex]
[tex]300 = 100t + \dfrac{1}{2}(-9.8)t^2[/tex]
 4.9 t² - 100 t + 300 = 0
using quadratic equation
[tex]t = \dfrac{-(-100)\pm \sqrt{100^2-4\times 4.9 \times 300}}{2\times 4.9}[/tex]
tâ = 3.65 s  and  tâ = 16.75 s
now, rocket A reaches 300 m on return at 16.75 s
rocket B reaches 300 m after 3.65 s
time difference of launch:
t = 16.75 - 3.65
t = 13.1 s
velocity of rocket A
v_a = u + g t
v_a =100 - 9.8 x 16.75
v_a = -64.15 m/s
velocity of rocket B
v_b = u + g t
v_b =100 - 9.8 x 3.65
v_b =+64.23 m/s
relative velocity of B relative to A at the time of the explosion
[tex]V_{BA} = v_b - V_a[/tex]
[tex]V_{BA} = 64.23 -(-64.15)[/tex]
[tex]V_{BA} = 128.38\ m/s[/tex]
relative velocity is equal to 128.38 m/s