Respuesta :

Answers:

1) [tex]x^{8} y^{8}[/tex]

2) [tex]y^{3} \sqrt{y}[/tex]

3) [tex]5x^{4} \sqrt{6}[/tex]

4) [tex]\sqrt{7}[/tex]

5) [tex]\frac{\sqrt{z}}{z}[/tex]

Step-by-step explanation:

1) [tex]\sqrt{x^{16} y^{36}}[/tex]

Rewriting the expression:

[tex](x^{16} y^{36})^{\frac{1}{2}}[/tex]

Multiplying the exponents:

[tex]x^{\frac{16}{2}} y^{\frac{36}{2}}[/tex]

Simplifying:

[tex]x^{8} y^{8}[/tex]

2) [tex]\sqrt{y^{7}}[/tex]

Rewriting the expression:

[tex]\sqrt{y^{6} y}=(y^{6} y)^{\frac{1}{2}}[/tex]

Multiplying the exponents:

[tex]y^{\frac{6}{2}} y^{\frac{1}{2}}[/tex]

Simplifying:

[tex]y^{3} y^{\frac{1}{2}}=y^{3} \sqrt{y}[/tex]

3) [tex]\sqrt{150 x^{8}}[/tex]

Rewriting the expression:

[tex]\sqrt{(6)(25) x^{8}}[/tex]

Since [tex]\sqrt{25}=5[/tex]:

[tex]5x^{4}\sqrt{6}[/tex]

4) [tex]\frac{7}{\sqrt{7}}[/tex]

Multiplying numerator and denominator by [tex]\sqrt{7}[/tex]:

[tex]\frac{7}{\sqrt{7}} (\frac{\sqrt{7}}{\sqrt{7}})=\frac{7}{7\sqrt{7}}[/tex]

Simplifying:

[tex]\sqrt{7}[/tex]

5) [tex]\frac{5z}{\sqrt{25 z^{3}}}[/tex]

Rewriting the expression:

[tex]\frac{5z}{5z \sqrt{z}}[/tex]

Simplifying:

[tex]\frac{1}{\sqrt{z}}[/tex]

Since we do not want the square root in the denominator, we can multiply numerator and denominator by [tex]\sqrt{z}[/tex]:

[tex]\frac{1}{\sqrt{z}}(\frac{\sqrt{z}}{\sqrt{z}})[/tex]

Finally:

[tex]\frac{\sqrt{z}}{z}[/tex]