Respuesta :

Answer:

[tex]x=\frac{7}{5}[/tex]

[tex]y=-\frac{22}{5}[/tex]

Step-by-step explanation:

Given:

The given expressions are.

[tex]6x+y=4[/tex]

[tex]x-4y=19[/tex]

We need to find x and y values.

Solution:

Equation 1⇒ [tex]6x+y=4[/tex]

Equation 2⇒ [tex]x-4y=19[/tex]

First solve the equation 1 for y.

[tex]6x+y=4[/tex]

[tex]y = 4-6x[/tex] --------(3)

Substitute [tex]y = 4-6x[/tex] in equation 2.

[tex]x-4(4-6x)=19[/tex]

Simplify.

[tex]x-(4\times 4 - 4\times 6x)=19[/tex]

[tex]x-(16-24x)=19[/tex]

[tex]x-16+24x=19[/tex]

Add 16 both side of the equation.

[tex]25x-16+16=19+16[/tex]

[tex]25x=35[/tex]

[tex]x=\frac{35}{25}[/tex]

Divide Numerator and denominator by 5.

[tex]x=\frac{7}{5}[/tex]

Substitute x value in equation 3 and simplify.

[tex]y=4-6(\frac{7}{5})[/tex]

[tex]y=4-\frac{6\times 7}{5}[/tex]

[tex]y=4-\frac{42}{5}[/tex]

[tex]y=\frac{5\times 4-42}{5}[/tex]

[tex]y=\frac{20-42}{5}[/tex]

[tex]y=-\frac{22}{5}[/tex].

Therefore, the value of [tex]x=\frac{7}{5}[/tex] and [tex]y=-\frac{22}{5}[/tex].