Answer:
The perimeter of the rectangle can be represented as:
⇒ [tex](21t+27)\ ft[/tex]
Step-by-step explanation:
Given :
Width of the rectangle = [tex](6t-4.5)\ ft[/tex]
Length of the rectangle = [tex](4.5t+9)\ ft[/tex]
To find the perimeter of the rectangle.
Solution:
The perimeter of a rectangle is given as :
⇒ [tex]2(l+w)[/tex]
where [tex]l[/tex] represents length of the rectangle and [tex]w[/tex] represents the width of the rectangle.
Plugging in the given data of length and width to find the perimeter of the rectangle.
⇒ [tex]2(6t+4.5+4.5t+9)[/tex]
Adding like terms.
⇒ [tex]2(6t+4.5t+4.5+9)[/tex]
⇒ [tex]2(10.5t+13.5)[/tex]
Using distribution
⇒ [tex](21t+27)\ ft[/tex]
Thus, perimeter of the rectangle can be represented as:
⇒ [tex](21t+27)\ ft[/tex] (Answer)