Answer:
[tex]1.18454\times 10^{-19}\ Pa[/tex]
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration
m = Mass of bullet = [tex]2.6\times 10^{23}\ kg[/tex]
r = Radius of barrel = [tex]2.8\times 10^{23}\ m[/tex]
[tex]v^2-u^2=2as\\\Rightarrow a=\dfrac{v^2-u^2}{2s}\\\Rightarrow a=\dfrac{370^2-0^2}{2\times 0.61}\\\Rightarrow a=112213.11475\ m/s^2[/tex]
Pressure is given by
[tex]P=\dfrac{F}{A}\\\Rightarrow P=\dfrac{ma}{\pi r^2}\\\Rightarrow P=\dfrac{2.6\times 10^{23}\times 112213.11475}{\pi (2.8\times 10^{23})^2}\\\Rightarrow P=1.18454\times 10^{-19}\ Pa[/tex]
The pressure of the expanding gas is [tex]1.18454\times 10^{-19}\ Pa[/tex]