Suppose the length of the vegetable garden is increased by 50%. The new length can be written as (3y + 5) + 1 2(3y + 5) or 1.5(3y + 5). Explain why both expressions are correct. Then write the new length of the garden in simplified form.

Respuesta :

Answer:

Given:

Length of the garden is represented by :

[tex]3y+5[/tex]

The length is increased by 50%.

To find the new length.

Solution:

1) The original length = [tex]3y+5[/tex]

The increase in length will be = [tex]50%[/tex] of [tex]3y+5[/tex]

⇒ [tex]\frac{50}{100}(3y+5)[/tex]

⇒ [tex]\frac{1}{2}(3y+5)[/tex]

The new length  = Original length + Increased length = [tex](3y+5)+ \frac{1}{2}(3y+5)[/tex]

2) Let the original length = 100%

Increase percent of length = 50%

Total percent of length = [tex]100\%+50\%=150\%[/tex]

New length = [tex]150%[/tex] of [tex]3y+5[/tex]

⇒ [tex]\frac{150}{100}(3y+5)[/tex]

⇒ [tex]1.5(3y+5)[/tex]

Thus,  the new length of the garden can be represented by both expression :

[tex](3y+5)+ \frac{1}{2}(3y+5)[/tex] or [tex]1.5(3y+5)[/tex]