Answer:
Given:
Length of the garden is represented by :
[tex]3y+5[/tex]
The length is increased by 50%.
To find the new length.
Solution:
1) The original length = [tex]3y+5[/tex]
The increase in length will be = [tex]50%[/tex] of [tex]3y+5[/tex]
⇒ [tex]\frac{50}{100}(3y+5)[/tex]
⇒ [tex]\frac{1}{2}(3y+5)[/tex]
The new length  = Original length + Increased length = [tex](3y+5)+ \frac{1}{2}(3y+5)[/tex]
2) Let the original length = 100%
Increase percent of length = 50%
Total percent of length = [tex]100\%+50\%=150\%[/tex]
New length = [tex]150%[/tex] of [tex]3y+5[/tex]
⇒ [tex]\frac{150}{100}(3y+5)[/tex]
⇒ [tex]1.5(3y+5)[/tex]
Thus, Â the new length of the garden can be represented by both expression :
[tex](3y+5)+ \frac{1}{2}(3y+5)[/tex] or [tex]1.5(3y+5)[/tex]