A flash distillation chamber operating at 101.3 kpa is separating an ethanol water mixture the feed mixture contains z weight ethanol and a molar flow rate of a feed is

Respuesta :

Answer:

The answer is [tex][\frac{LX_1}{46} + \frac{L(1-x)}{18}]\times0.454[/tex] mol/hr

[tex][\frac{Vy_1}{46}+\frac{V(1-y)}{18}]\times0.454[/tex]mol/hr

Explanation:

For flash distillation

F = V+L

[tex]\frac{V}{F} + \frac{L}{F} = 1[/tex]

[tex]\frac{F}{V} -\frac{L}{V} = 1[/tex]

Fz = Vy+Lx

Y = [tex]\frac{F}{V}\times Z - \frac{L}{V}\times X[/tex]                  let, [tex]\frac{V}{F} = F[/tex]

[tex]y = \frac{Z}{F} -[ \frac{1}{F} -1]\times X[/tex]

Highlighted reading

F = 299;  [tex]\frac{V}{F}[/tex] = 0.85 ; z = 0.36

y = [tex]\frac{0.36}{0.85} - (-0.15)\times X[/tex]

 = 0.423 + 0.15x ------------(i)

[tex]y^{*}[/tex] = -43.99713[tex]x^{6}[/tex] + 148.27274[tex]x^{5}[/tex] - 195.46[tex]x^{4}[/tex]+127.99[tex]x^{3}[/tex]-43.3[tex]x^{2}[/tex]+ 7.469[tex]x^{}[/tex]+ 0.02011

At equilibrium, [tex]y^{*}[/tex] = y

0.423+0.15[tex]x^{}[/tex] = [tex]y^{*}[/tex]

-43.99713[tex]x^{6}[/tex]+ 148.27274[tex]x^{5}[/tex] - 195.46[tex]x^{4}[/tex]+127.99[tex]x^{3}[/tex]-43.3[tex]x^{2}[/tex]+ 7.319[tex]x^{}[/tex]-0.403

F(x) for Newton's Law

Let [tex]x_{0} = 0[/tex]

     [tex]x_{1}[/tex]     = [tex]\frac{0-[{-0.403}]}{7.319}[/tex]

             = 0.055

     [tex]x_{2}[/tex]      = [tex]\frac{{0.055}-{f(0.055)} {{{{{{{}}}}}}}}{f^{'} (0.055)}[/tex]

             = [tex]\frac{{(0.055)}-(-0.11)}{3.59}[/tex]

             = 0.085

    [tex]x^{3}[/tex]    = [tex]\frac{{0.085}-(0.024)}{2.289}[/tex]

           = 0.095

   [tex]x^{4}[/tex]     = [tex]\frac{{0.095}-(-0.0353)}{-1.410}[/tex]

            = 0.07

From This x and y are found from equation (i) and L and V are obtained from [tex]\frac{V}{F}[/tex]  and F values

[tex][\frac{LX_1}{46} + \frac{L(1-x)}{18}]\times0.454[/tex] mol/hr

[tex][\frac{Vy_1}{46}+\frac{V(1-y)}{18}]\times0.454[/tex]mol/hr

   

Ver imagen nandhini123
Ver imagen nandhini123