The area of a triangle is 15x^4+3x^3+4x^2-x-3 square meters. The length of the base of the triangle is 6x^2-2 meters. What is the height of the triangle?

Respuesta :

Answer:

The height of the triangle is: [tex]H = (5x^2 + x +3)[/tex]

Step-by-step explanation:

Here, the area the triangle  is given as: [tex]15x^4 + 3x^3 + 4x^2 - x - 3[/tex]

Also, base of the triangle  = [tex](6x^2 -2)[/tex]

Let us assume the height of the triangle = H units

Now, AREA of TRIANGLE =  [tex]\frac{1}{2} \times B \times H[/tex]

[tex]\implies (15x^4+3x^3+4x^2-x-3 ) = \frac{1}{2} \times ( 6x^2-2) \times H\\\implies H =\frac{ (15x^4+3x^3+4x^2-x-3 )}{(3x^2-1)}[/tex]

Solving by LONG DIVISION, we get:

[tex]H = (5x^2 + x +3)[/tex]

Hence, the height of the triangle is: [tex]H = (5x^2 + x +3)[/tex]

Ver imagen ranikashyab066