Answer:
0.74 m/s
Explanation:
given,
time taken by the ramp to cover cliff , t = 64 s
acceleration = 0.37 m/s²
distance traveled by the belt
 [tex]x = v_{belt}t_{belt}[/tex]
Clifford  is moving with constant acceleration
 [tex]x = v_ot + \dfrac{1}{2}at^2[/tex]...(1)
initial velocity is equal to zero
 [tex]x =\dfrac{1}{2}at^2[/tex]........(2)
equating equation (1) and (2)
[tex]v_{belt}t_{belt}=\dfrac{1}{2}at^2[/tex]
[tex]v_{belt}t_{belt}=\dfrac{1}{2}a(\dfrac{1}{4}\times t_{belt})^2[/tex]
[tex]v_{belt}=\dfrac{1}{32}a t_{belt}[/tex]
[tex]v_{belt}=\dfrac{1}{32}\times 0.37 \times 64[/tex]
[tex]v_{belt}= 0.74\ m/s[/tex]
Speed of the belt is equal to 0.74 m/s