a) Change in momentum: -300 kg m/s
b) Force felt by the jumper: -300 N
Explanation:
a)
The change in momentum of an object is given by
[tex]\Delta p = m(v-u)[/tex]
where
m is the mass of the object
v is the final velocity
u is the initial velocity
For the jumper in this problem, we have
m = 60 kg (mass of the jumper)
v = 0 (final velocity is zero)
u = 5.0 m/s (initial velocity before he hits the mat)
Substituting,
[tex]\Delta p = (60)(0-5.0)=-300 kg m/s[/tex]
Where the negative sign means that the direction of the change in momentum is opposite to the direction of motion.
b)
According to the impulse theorem, the change in momentum of an object is equal to the impulse exerted on it:
[tex]\Delta p = F\Delta t[/tex]
where
F is the force exerted on the object
[tex]\Delta t[/tex] is the time interval
In this problem, we have
[tex]\Delta p = -300 kg m/s[/tex] (change in momentum)
[tex]\Delta t = 1 s[/tex] (duration of the  collision)
Solving for F,
[tex]F=\frac{\Delta p}{\Delta t}=\frac{-300}{1}=-300 N[/tex]
Where the negative sign means that the direction of the force is opposite to the direction of motion.
Learn more about change in momentum:
brainly.com/question/9484203
#LearnwithBrainly